There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - 0.1(1 + e^{-0.5}x(3sin(3.11)x - cos(3.11)x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 0.3x^{2}e^{-0.5}sin(3.11) + 0.1x^{2}e^{-0.5}cos(3.11) + x - 0.1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 0.3x^{2}e^{-0.5}sin(3.11) + 0.1x^{2}e^{-0.5}cos(3.11) + x - 0.1\right)}{dx}\\=& - 0.3*2xe^{-0.5}sin(3.11) - 0.3x^{2}e^{-0.5}*0sin(3.11) - 0.3x^{2}e^{-0.5}cos(3.11)*0 + 0.1*2xe^{-0.5}cos(3.11) + 0.1x^{2}e^{-0.5}*0cos(3.11) + 0.1x^{2}e^{-0.5}*-sin(3.11)*0 + 1 + 0\\=& - 0.6xe^{-0.5}sin(3.11) + 0.2xe^{-0.5}cos(3.11) + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !