There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{3} + 2x)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{12} + 8x^{10} + 24x^{8} + 32x^{6} + 16x^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{12} + 8x^{10} + 24x^{8} + 32x^{6} + 16x^{4}\right)}{dx}\\=&12x^{11} + 8*10x^{9} + 24*8x^{7} + 32*6x^{5} + 16*4x^{3}\\=&12x^{11} + 80x^{9} + 192x^{7} + 192x^{5} + 64x^{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !