Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 6 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 6th\ derivative\ of\ function\ xln(3 + 2x - {x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(2x - x^{2} + 3)\\\\ &\color{blue}{The\ 6th\ derivative\ of\ function:} \\=&\frac{46080x^{6}}{(2x - x^{2} + 3)^{6}} - \frac{7680x^{7}}{(2x - x^{2} + 3)^{6}} + \frac{69120x^{4}}{(2x - x^{2} + 3)^{5}} - \frac{115200x^{5}}{(2x - x^{2} + 3)^{6}} + \frac{153600x^{4}}{(2x - x^{2} + 3)^{6}} - \frac{16128x^{5}}{(2x - x^{2} + 3)^{5}} + \frac{25920x^{2}}{(2x - x^{2} + 3)^{4}} - \frac{115200x^{3}}{(2x - x^{2} + 3)^{6}} + \frac{46080x^{2}}{(2x - x^{2} + 3)^{6}} - \frac{115200x^{3}}{(2x - x^{2} + 3)^{5}} + \frac{92160x^{2}}{(2x - x^{2} + 3)^{5}} - \frac{10080x^{3}}{(2x - x^{2} + 3)^{4}} - \frac{34560x}{(2x - x^{2} + 3)^{5}} - \frac{21600x}{(2x - x^{2} + 3)^{4}} - \frac{1680x}{(2x - x^{2} + 3)^{3}} - \frac{7680x}{(2x - x^{2} + 3)^{6}} + \frac{5760}{(2x - x^{2} + 3)^{4}} + \frac{4608}{(2x - x^{2} + 3)^{5}} + \frac{1440}{(2x - x^{2} + 3)^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return