There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({(x)}^{2} + 2x + 5)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{8} + 8x^{7} + 44x^{6} + 152x^{5} + 406x^{4} + 760x^{3} + 1100x^{2} + 1000x + 625\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{8} + 8x^{7} + 44x^{6} + 152x^{5} + 406x^{4} + 760x^{3} + 1100x^{2} + 1000x + 625\right)}{dx}\\=&8x^{7} + 8*7x^{6} + 44*6x^{5} + 152*5x^{4} + 406*4x^{3} + 760*3x^{2} + 1100*2x + 1000 + 0\\=&8x^{7} + 56x^{6} + 264x^{5} + 760x^{4} + 1624x^{3} + 2280x^{2} + 2200x + 1000\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !