There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{({(2x + 1)}^{9})}{({(3x - 1)}^{4})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{(2x + 1)^{9}}{(3x - 1)^{4}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{(2x + 1)^{9}}{(3x - 1)^{4}})\right)}{dx}\\=&\frac{(\frac{(9(2x + 1)^{8}(2 + 0))}{(3x - 1)^{4}} + (2x + 1)^{9}(\frac{-4(3 + 0)}{(3x - 1)^{5}}))}{(\frac{(2x + 1)^{9}}{(3x - 1)^{4}})}\\=&\frac{18}{(2x + 1)} - \frac{12}{(3x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !