Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sqrt(1 + sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(sin(x) + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(sin(x) + 1)\right)}{dx}\\=&\frac{(cos(x) + 0)*\frac{1}{2}}{(sin(x) + 1)^{\frac{1}{2}}}\\=&\frac{cos(x)}{2(sin(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{cos(x)}{2(sin(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(cos(x) + 0)}{(sin(x) + 1)^{\frac{3}{2}}})cos(x)}{2} + \frac{-sin(x)}{2(sin(x) + 1)^{\frac{1}{2}}}\\=&\frac{-cos^{2}(x)}{4(sin(x) + 1)^{\frac{3}{2}}} - \frac{sin(x)}{2(sin(x) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return