There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-Tln(t)}{ln(1 + \frac{v}{ln(1 + e^{x - v})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-Tln(t)}{ln(\frac{v}{ln(e^{x - v} + 1)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-Tln(t)}{ln(\frac{v}{ln(e^{x - v} + 1)} + 1)}\right)}{dx}\\=&\frac{-T*0}{(t)ln(\frac{v}{ln(e^{x - v} + 1)} + 1)} - \frac{Tln(t)*-(\frac{v*-(e^{x - v}(1 + 0) + 0)}{ln^{2}(e^{x - v} + 1)(e^{x - v} + 1)} + 0)}{ln^{2}(\frac{v}{ln(e^{x - v} + 1)} + 1)(\frac{v}{ln(e^{x - v} + 1)} + 1)}\\=& - \frac{Tve^{x - v}ln(t)}{(\frac{v}{ln(e^{x - v} + 1)} + 1)(e^{x - v} + 1)ln^{2}(\frac{v}{ln(e^{x - v} + 1)} + 1)ln^{2}(e^{x - v} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !