There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} - 3x + 2)}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} - 3x + 2)^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} - 3x + 2)^{n}\right)}{dx}\\=&((x^{2} - 3x + 2)^{n}((0)ln(x^{2} - 3x + 2) + \frac{(n)(2x - 3 + 0)}{(x^{2} - 3x + 2)}))\\=&\frac{2nx(x^{2} - 3x + 2)^{n}}{(x^{2} - 3x + 2)} - \frac{3n(x^{2} - 3x + 2)^{n}}{(x^{2} - 3x + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !