Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {9}^{x}(x + 1){\frac{1}{10}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{9}^{(2x)} + {9}^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{9}^{(2x)} + {9}^{(2x)}\right)}{dx}\\=&{9}^{(2x)} + x({9}^{(2x)}((2)ln(9) + \frac{(2x)(0)}{(9)})) + ({9}^{(2x)}((2)ln(9) + \frac{(2x)(0)}{(9)}))\\=&2 * {9}^{(2x)}ln(9) + 2x{9}^{(2x)}ln(9) + {9}^{(2x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return