There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({(x - a)}^{2} + {b}^{2})}^{(\frac{-3}{2})} + {({(x + a)}^{2} + {b}^{2})}^{(\frac{-3}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{3}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{3}{2}}}\right)}{dx}\\=&2(\frac{\frac{-3}{2}(2x - 2a + 0 + 0)}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{5}{2}}})\\=&\frac{-6x}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{5}{2}}} + \frac{6a}{(x^{2} - 2ax + a^{2} + b^{2})^{\frac{5}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !