There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (10 - x){(20 - \frac{8000}{(27xx)})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{64000000}{729}}{x^{3}} + \frac{\frac{320000}{27}}{x} + \frac{\frac{640000000}{729}}{x^{4}} - 400x - \frac{\frac{3200000}{27}}{x^{2}} + 4000\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{64000000}{729}}{x^{3}} + \frac{\frac{320000}{27}}{x} + \frac{\frac{640000000}{729}}{x^{4}} - 400x - \frac{\frac{3200000}{27}}{x^{2}} + 4000\right)}{dx}\\=& - \frac{\frac{64000000}{729}*-3}{x^{4}} + \frac{\frac{320000}{27}*-1}{x^{2}} + \frac{\frac{640000000}{729}*-4}{x^{5}} - 400 - \frac{\frac{3200000}{27}*-2}{x^{3}} + 0\\=&\frac{64000000}{243x^{4}} - \frac{320000}{27x^{2}} - \frac{2560000000}{729x^{5}} + \frac{6400000}{27x^{3}} - 400\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !