There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{n} + {x}^{n} + {n}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2{x}^{n} + {n}^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2{x}^{n} + {n}^{n}\right)}{dx}\\=&2({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)})) + ({n}^{n}((0)ln(n) + \frac{(n)(0)}{(n)}))\\=&\frac{2n{x}^{n}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !