There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {ln(x)}^{(\frac{eog{x}^{10}}{l})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {ln(x)}^{(\frac{ogx^{10}e}{l})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {ln(x)}^{(\frac{ogx^{10}e}{l})}\right)}{dx}\\=&({ln(x)}^{(\frac{ogx^{10}e}{l})}((\frac{og*10x^{9}e}{l} + \frac{ogx^{10}*0}{l})ln(ln(x)) + \frac{(\frac{ogx^{10}e}{l})(\frac{1}{(x)})}{(ln(x))}))\\=&\frac{10ogx^{9}{ln(x)}^{(\frac{ogx^{10}e}{l})}eln(ln(x))}{l} + \frac{ogx^{9}{ln(x)}^{(\frac{ogx^{10}e}{l})}e}{lln(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !