There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arctan(\frac{x}{(sqrt(1) - {x}^{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(\frac{x}{(sqrt(1) - x^{2})})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(\frac{x}{(sqrt(1) - x^{2})})\right)}{dx}\\=&(\frac{((\frac{-(0*\frac{1}{2}^{\frac{1}{2}} - 2x)}{(sqrt(1) - x^{2})^{2}})x + \frac{1}{(sqrt(1) - x^{2})})}{(1 + (\frac{x}{(sqrt(1) - x^{2})})^{2})})\\=&\frac{-2x^{2}}{(sqrt(1) - x^{2})^{2}(\frac{x^{2}}{(sqrt(1) - x^{2})^{2}} + 1)} + \frac{1}{(sqrt(1) - x^{2})(\frac{x^{2}}{(sqrt(1) - x^{2})^{2}} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !