There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(x - 3)}^{3}(x - 1)}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}x^{4} - \frac{5}{2}x^{3} + 9x^{2} - \frac{27}{2}x + \frac{27}{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}x^{4} - \frac{5}{2}x^{3} + 9x^{2} - \frac{27}{2}x + \frac{27}{4}\right)}{dx}\\=&\frac{1}{4}*4x^{3} - \frac{5}{2}*3x^{2} + 9*2x - \frac{27}{2} + 0\\=&x^{3} - \frac{15x^{2}}{2} + 18x - \frac{27}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !