There are 1 questions in this calculation: for each question, the 1 derivative of w is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -y + \frac{(e^{wx + b})}{(1 + e^{wx + b})}\ with\ respect\ to\ w:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -y + \frac{e^{xw + b}}{(e^{xw + b} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -y + \frac{e^{xw + b}}{(e^{xw + b} + 1)}\right)}{dw}\\=&0 + (\frac{-(e^{xw + b}(x + 0) + 0)}{(e^{xw + b} + 1)^{2}})e^{xw + b} + \frac{e^{xw + b}(x + 0)}{(e^{xw + b} + 1)}\\=&\frac{-xe^{{\left(xw + b\right)}*{2}}}{(e^{xw + b} + 1)^{2}} + \frac{xe^{xw + b}}{(e^{xw + b} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !