There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(2x - 1)}{({(x - 1)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x}{(x - 1)^{2}} - \frac{1}{(x - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x}{(x - 1)^{2}} - \frac{1}{(x - 1)^{2}}\right)}{dx}\\=&2(\frac{-2(1 + 0)}{(x - 1)^{3}})x + \frac{2}{(x - 1)^{2}} - (\frac{-2(1 + 0)}{(x - 1)^{3}})\\=&\frac{-4x}{(x - 1)^{3}} + \frac{2}{(x - 1)^{3}} + \frac{2}{(x - 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4x}{(x - 1)^{3}} + \frac{2}{(x - 1)^{3}} + \frac{2}{(x - 1)^{2}}\right)}{dx}\\=&-4(\frac{-3(1 + 0)}{(x - 1)^{4}})x - \frac{4}{(x - 1)^{3}} + 2(\frac{-3(1 + 0)}{(x - 1)^{4}}) + 2(\frac{-2(1 + 0)}{(x - 1)^{3}})\\=&\frac{12x}{(x - 1)^{4}} - \frac{6}{(x - 1)^{4}} - \frac{8}{(x - 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !