There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({t}^{3} + 1 + 1 - {t}^{2})}{({t}^{3} + 1 - 1 + {t}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{t^{3}}{(t^{3} + t^{2})} - \frac{t^{2}}{(t^{3} + t^{2})} + \frac{2}{(t^{3} + t^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{t^{3}}{(t^{3} + t^{2})} - \frac{t^{2}}{(t^{3} + t^{2})} + \frac{2}{(t^{3} + t^{2})}\right)}{dx}\\=&(\frac{-(0 + 0)}{(t^{3} + t^{2})^{2}})t^{3} + 0 - (\frac{-(0 + 0)}{(t^{3} + t^{2})^{2}})t^{2} + 0 + 2(\frac{-(0 + 0)}{(t^{3} + t^{2})^{2}})\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !