There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{z{(z - c)}^{2}}{(1 - cos(z))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2z^{2}c}{(-cos(z) + 1)} + \frac{zc^{2}}{(-cos(z) + 1)} + \frac{z^{3}}{(-cos(z) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2z^{2}c}{(-cos(z) + 1)} + \frac{zc^{2}}{(-cos(z) + 1)} + \frac{z^{3}}{(-cos(z) + 1)}\right)}{dx}\\=& - 2(\frac{-(--sin(z)*0 + 0)}{(-cos(z) + 1)^{2}})z^{2}c + 0 + (\frac{-(--sin(z)*0 + 0)}{(-cos(z) + 1)^{2}})zc^{2} + 0 + (\frac{-(--sin(z)*0 + 0)}{(-cos(z) + 1)^{2}})z^{3} + 0\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !