There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - c)((3x - c)(1 - cos(x)) - x(x - c)sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 3x^{2}cos(x) - x^{3}sin(x) + 4cxcos(x) + 2cx^{2}sin(x) + 3x^{2} - c^{2}xsin(x) - c^{2}cos(x) - 4cx + c^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 3x^{2}cos(x) - x^{3}sin(x) + 4cxcos(x) + 2cx^{2}sin(x) + 3x^{2} - c^{2}xsin(x) - c^{2}cos(x) - 4cx + c^{2}\right)}{dx}\\=& - 3*2xcos(x) - 3x^{2}*-sin(x) - 3x^{2}sin(x) - x^{3}cos(x) + 4ccos(x) + 4cx*-sin(x) + 2c*2xsin(x) + 2cx^{2}cos(x) + 3*2x - c^{2}sin(x) - c^{2}xcos(x) - c^{2}*-sin(x) - 4c + 0\\=& - 6xcos(x) - x^{3}cos(x) + 4ccos(x) + 2cx^{2}cos(x) + 6x - c^{2}xcos(x) - 4c\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !