There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{3}{e}^{({x}^{2} + 3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}{e}^{(x^{2} + 3x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}{e}^{(x^{2} + 3x)}\right)}{dx}\\=&3x^{2}{e}^{(x^{2} + 3x)} + x^{3}({e}^{(x^{2} + 3x)}((2x + 3)ln(e) + \frac{(x^{2} + 3x)(0)}{(e)}))\\=&3x^{2}{e}^{(x^{2} + 3x)} + 2x^{4}{e}^{(x^{2} + 3x)} + 3x^{3}{e}^{(x^{2} + 3x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !