There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(2cos(x))}{(3sin(2)x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{2}{3}cos(x)}{xsin(2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{2}{3}cos(x)}{xsin(2)}\right)}{dx}\\=&\frac{\frac{2}{3}*-cos(x)}{x^{2}sin(2)} + \frac{\frac{2}{3}*-cos(2)*0cos(x)}{xsin^{2}(2)} + \frac{\frac{2}{3}*-sin(x)}{xsin(2)}\\=&\frac{-2cos(x)}{3x^{2}sin(2)} - \frac{2sin(x)}{3xsin(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !