There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{(x - 2)}^{2}x}{2} + 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}x^{3} - 2x^{2} + 2x + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}x^{3} - 2x^{2} + 2x + 2\right)}{dx}\\=&\frac{1}{2}*3x^{2} - 2*2x + 2 + 0\\=&\frac{3x^{2}}{2} - 4x + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{3x^{2}}{2} - 4x + 2\right)}{dx}\\=&\frac{3*2x}{2} - 4 + 0\\=&3x - 4\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !