There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{3}{x}^{(log*8((3{x}^{2}) - (\frac{1}{x}) + ({2}^{x})))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3}\right)}{dx}\\=&({x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}((24log*2x - \frac{8log*-1}{x^{2}} + 8log({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})))ln(x) + \frac{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})(1)}{(x)}))e^{3} + {x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}*3e^{2}*0\\=&48logx{x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3}ln(x) + \frac{8log{x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3}ln(x)}{x^{2}} + 8log{2}^{x}{x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3}ln(2)ln(x) + 24logx{x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3} - \frac{8log{x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3}}{x^{2}} + \frac{8log{2}^{x}{x}^{(24logx^{2} - \frac{8log}{x} + 8log{2}^{x})}e^{3}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !