Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{3}{x}^{l}og*8((3{x}^{2}) - (\frac{1}{x}) + ({2}^{x}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 24ogx^{2}{x}^{l}e^{3} - \frac{8og{x}^{l}e^{3}}{x} + 8og{x}^{l}{2}^{x}e^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 24ogx^{2}{x}^{l}e^{3} - \frac{8og{x}^{l}e^{3}}{x} + 8og{x}^{l}{2}^{x}e^{3}\right)}{dx}\\=&24og*2x{x}^{l}e^{3} + 24ogx^{2}({x}^{l}((0)ln(x) + \frac{(l)(1)}{(x)}))e^{3} + 24ogx^{2}{x}^{l}*3e^{2}*0 - \frac{8og*-{x}^{l}e^{3}}{x^{2}} - \frac{8og({x}^{l}((0)ln(x) + \frac{(l)(1)}{(x)}))e^{3}}{x} - \frac{8og{x}^{l}*3e^{2}*0}{x} + 8og({x}^{l}((0)ln(x) + \frac{(l)(1)}{(x)})){2}^{x}e^{3} + 8og{x}^{l}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))e^{3} + 8og{x}^{l}{2}^{x}*3e^{2}*0\\=&48ogx{x}^{l}e^{3} + 24logx{x}^{l}e^{3} + \frac{8og{x}^{l}e^{3}}{x^{2}} - \frac{8log{x}^{l}e^{3}}{x^{2}} + \frac{8log{x}^{l}{2}^{x}e^{3}}{x} + 8og{2}^{x}{x}^{l}e^{3}ln(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return