There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} - {\frac{1}{(2x + 1)}}^{\frac{1}{3}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} - \frac{1}{(2x + 1)^{\frac{1}{3}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} - \frac{1}{(2x + 1)^{\frac{1}{3}}}\right)}{dx}\\=&2x - (\frac{\frac{-1}{3}(2 + 0)}{(2x + 1)^{\frac{4}{3}}})\\=&2x + \frac{2}{3(2x + 1)^{\frac{4}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !