Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ Xsprt(\frac{(x - 1)(x - 2)}{(x - 3)(x - 4)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{Xsprtx^{2}}{(x - 3)(x - 4)} - \frac{3Xsprtx}{(x - 3)(x - 4)} + \frac{2Xsprt}{(x - 3)(x - 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{Xsprtx^{2}}{(x - 3)(x - 4)} - \frac{3Xsprtx}{(x - 3)(x - 4)} + \frac{2Xsprt}{(x - 3)(x - 4)}\right)}{dx}\\=&\frac{(\frac{-(1 + 0)}{(x - 3)^{2}})Xsprtx^{2}}{(x - 4)} + \frac{(\frac{-(1 + 0)}{(x - 4)^{2}})Xsprtx^{2}}{(x - 3)} + \frac{Xsprt*2x}{(x - 3)(x - 4)} - \frac{3(\frac{-(1 + 0)}{(x - 3)^{2}})Xsprtx}{(x - 4)} - \frac{3(\frac{-(1 + 0)}{(x - 4)^{2}})Xsprtx}{(x - 3)} - \frac{3Xsprt}{(x - 3)(x - 4)} + \frac{2(\frac{-(1 + 0)}{(x - 3)^{2}})Xsprt}{(x - 4)} + \frac{2(\frac{-(1 + 0)}{(x - 4)^{2}})Xsprt}{(x - 3)} + 0\\=&\frac{-Xsprtx^{2}}{(x - 3)^{2}(x - 4)} - \frac{Xsprtx^{2}}{(x - 4)^{2}(x - 3)} + \frac{2Xsprtx}{(x - 4)(x - 3)} + \frac{3Xsprtx}{(x - 3)^{2}(x - 4)} + \frac{3Xsprtx}{(x - 4)^{2}(x - 3)} - \frac{3Xsprt}{(x - 3)(x - 4)} - \frac{2Xsprt}{(x - 3)^{2}(x - 4)} - \frac{2Xsprt}{(x - 4)^{2}(x - 3)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return