Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xsprt(\frac{(x - 1)(x - 2)(x - 4)}{(x - 3)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sprtx^{4}}{(x - 3)} - \frac{7sprtx^{3}}{(x - 3)} + \frac{14sprtx^{2}}{(x - 3)} - \frac{8sprtx}{(x - 3)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sprtx^{4}}{(x - 3)} - \frac{7sprtx^{3}}{(x - 3)} + \frac{14sprtx^{2}}{(x - 3)} - \frac{8sprtx}{(x - 3)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 3)^{2}})sprtx^{4} + \frac{sprt*4x^{3}}{(x - 3)} - 7(\frac{-(1 + 0)}{(x - 3)^{2}})sprtx^{3} - \frac{7sprt*3x^{2}}{(x - 3)} + 14(\frac{-(1 + 0)}{(x - 3)^{2}})sprtx^{2} + \frac{14sprt*2x}{(x - 3)} - 8(\frac{-(1 + 0)}{(x - 3)^{2}})sprtx - \frac{8sprt}{(x - 3)}\\=&\frac{-sprtx^{4}}{(x - 3)^{2}} + \frac{4sprtx^{3}}{(x - 3)} + \frac{7sprtx^{3}}{(x - 3)^{2}} - \frac{21sprtx^{2}}{(x - 3)} - \frac{14sprtx^{2}}{(x - 3)^{2}} + \frac{28sprtx}{(x - 3)} + \frac{8sprtx}{(x - 3)^{2}} - \frac{8sprt}{(x - 3)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return