There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({(75 - 12x)}^{2} + {(8x)}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(208x^{2} - 1800x + 5625)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(208x^{2} - 1800x + 5625)\right)}{dx}\\=&\frac{(208*2x - 1800 + 0)*\frac{1}{2}}{(208x^{2} - 1800x + 5625)^{\frac{1}{2}}}\\=&\frac{208x}{(208x^{2} - 1800x + 5625)^{\frac{1}{2}}} - \frac{900}{(208x^{2} - 1800x + 5625)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !