Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {sqrt(75 - 12x)}^{2} + {(8x)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-12x + 75)^{2} + 64x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-12x + 75)^{2} + 64x^{2}\right)}{dx}\\=&\frac{2(-12x + 75)^{\frac{1}{2}}(-12 + 0)*\frac{1}{2}}{(-12x + 75)^{\frac{1}{2}}} + 64*2x\\=&128x - 12\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return