There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(x - 1)(x - 4)(x + 7)(x - 8)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 6x^{4} - 47x^{3} + 276x^{2} - 224x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 6x^{4} - 47x^{3} + 276x^{2} - 224x\right)}{dx}\\=&5x^{4} - 6*4x^{3} - 47*3x^{2} + 276*2x - 224\\=&5x^{4} - 24x^{3} - 141x^{2} + 552x - 224\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !