There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 3{x}^{4} - 8{x}^{3} + 6{x}^{2} - 3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{4} - 8x^{3} + 6x^{2} - 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{4} - 8x^{3} + 6x^{2} - 3\right)}{dx}\\=&3*4x^{3} - 8*3x^{2} + 6*2x + 0\\=&12x^{3} - 24x^{2} + 12x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12x^{3} - 24x^{2} + 12x\right)}{dx}\\=&12*3x^{2} - 24*2x + 12\\=&36x^{2} - 48x + 12\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 36x^{2} - 48x + 12\right)}{dx}\\=&36*2x - 48 + 0\\=&72x - 48\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 72x - 48\right)}{dx}\\=&72 + 0\\=&72\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !