Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(-0.066ln(x) + 0.5749)}{(30.757ln(x) - 116.09)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-0.066ln(x)}{(30.757ln(x) - 116.09)} + \frac{0.5749}{(30.757ln(x) - 116.09)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-0.066ln(x)}{(30.757ln(x) - 116.09)} + \frac{0.5749}{(30.757ln(x) - 116.09)}\right)}{dx}\\=&-0.066(\frac{-(\frac{30.757}{(x)} + 0)}{(30.757ln(x) - 116.09)^{2}})ln(x) - \frac{0.066}{(30.757ln(x) - 116.09)(x)} + 0.5749(\frac{-(\frac{30.757}{(x)} + 0)}{(30.757ln(x) - 116.09)^{2}})\\=&\frac{2.029962ln(x)}{(30.757ln(x) - 116.09)(30.757ln(x) - 116.09)x} - \frac{0.066}{(30.757ln(x) - 116.09)x} - \frac{17.6821993}{(30.757ln(x) - 116.09)(30.757ln(x) - 116.09)x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return