There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ lg(\frac{x}{(1 - x)}) - \frac{(a + lg(2.303b))}{nb}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = lg(\frac{x}{(-x + 1)}) - \frac{a}{bn} - \frac{lg(2.303b)}{bn}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(\frac{x}{(-x + 1)}) - \frac{a}{bn} - \frac{lg(2.303b)}{bn}\right)}{dx}\\=&\frac{((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)})}{ln{10}(\frac{x}{(-x + 1)})} + 0 - \frac{0}{bnln{10}(2.303b)}\\=&\frac{-x}{(-x + 1)(-x + 1)ln{10}} + \frac{1}{(-x + 1)(-x + 1)ln{10}} - \frac{1}{(-x + 1)ln{10}} + \frac{1}{(-x + 1)xln{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !