There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ lg(\frac{f}{(1 - f)}) - \frac{(a + lg(2.303b))b}{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = lg(\frac{f}{(-f + 1)}) - \frac{ab}{n} - \frac{blg(2.303b)}{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(\frac{f}{(-f + 1)}) - \frac{ab}{n} - \frac{blg(2.303b)}{n}\right)}{dx}\\=&\frac{((\frac{-(0 + 0)}{(-f + 1)^{2}})f + 0)}{ln{10}(\frac{f}{(-f + 1)})} + 0 - \frac{b*0}{nln{10}(2.303b)}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !