There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos((2x - 1){3}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arccos(2*3^{\frac{1}{2}}x - 3^{\frac{1}{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(2*3^{\frac{1}{2}}x - 3^{\frac{1}{2}})\right)}{dx}\\=&(\frac{-(2*3^{\frac{1}{2}} + 0)}{((1 - (2*3^{\frac{1}{2}}x - 3^{\frac{1}{2}})^{2})^{\frac{1}{2}})})\\=&\frac{-2*3^{\frac{1}{2}}}{(-12x^{2} + 12x - 2)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !