There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{arctan(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{arctan(-x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{arctan(-x + 1)}\right)}{dx}\\=&({e}^{arctan(-x + 1)}(((\frac{(-1 + 0)}{(1 + (-x + 1)^{2})}))ln(e) + \frac{(arctan(-x + 1))(0)}{(e)}))\\=&\frac{-{e}^{arctan(-x + 1)}}{(x^{2} - 2x + 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !