Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {ln(sqrt(x))}^{2} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln^{2}(sqrt(x)) + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln^{2}(sqrt(x)) + 1\right)}{dx}\\=&\frac{2ln(sqrt(x))*\frac{1}{2}}{(sqrt(x))(x)^{\frac{1}{2}}} + 0\\=&\frac{ln(sqrt(x))}{x^{\frac{1}{2}}sqrt(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{ln(sqrt(x))}{x^{\frac{1}{2}}sqrt(x)}\right)}{dx}\\=&\frac{\frac{-1}{2}ln(sqrt(x))}{x^{\frac{3}{2}}sqrt(x)} + \frac{\frac{1}{2}}{x^{\frac{1}{2}}(sqrt(x))(x)^{\frac{1}{2}}sqrt(x)} + \frac{ln(sqrt(x))*-\frac{1}{2}}{x^{\frac{1}{2}}(x)(x)^{\frac{1}{2}}}\\=&\frac{-ln(sqrt(x))}{2x^{\frac{3}{2}}sqrt(x)} + \frac{1}{2xsqrt(x)^{2}} - \frac{ln(sqrt(x))}{2x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return