Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2x{e}^{x}x(3 + 2{x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6x^{2}{e}^{x} + 4x^{4}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6x^{2}{e}^{x} + 4x^{4}{e}^{x}\right)}{dx}\\=&6*2x{e}^{x} + 6x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 4*4x^{3}{e}^{x} + 4x^{4}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&12x{e}^{x} + 6x^{2}{e}^{x} + 16x^{3}{e}^{x} + 4x^{4}{e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12x{e}^{x} + 6x^{2}{e}^{x} + 16x^{3}{e}^{x} + 4x^{4}{e}^{x}\right)}{dx}\\=&12{e}^{x} + 12x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 6*2x{e}^{x} + 6x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 16*3x^{2}{e}^{x} + 16x^{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 4*4x^{3}{e}^{x} + 4x^{4}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&12{e}^{x} + 24x{e}^{x} + 54x^{2}{e}^{x} + 32x^{3}{e}^{x} + 4x^{4}{e}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return