Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x + 4)(x - 9){\frac{1}{(x - 2)}}^{-3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 11x^{4} + 6x^{3} + 148x^{2} - 392x + 288\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 11x^{4} + 6x^{3} + 148x^{2} - 392x + 288\right)}{dx}\\=&5x^{4} - 11*4x^{3} + 6*3x^{2} + 148*2x - 392 + 0\\=&5x^{4} - 44x^{3} + 18x^{2} + 296x - 392\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4} - 44x^{3} + 18x^{2} + 296x - 392\right)}{dx}\\=&5*4x^{3} - 44*3x^{2} + 18*2x + 296 + 0\\=&20x^{3} - 132x^{2} + 36x + 296\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return