There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ e^{5xx + 7x + 9} + e^{5x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{5x^{2} + 7x + 9} + e^{5x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{5x^{2} + 7x + 9} + e^{5x}\right)}{dx}\\=&e^{5x^{2} + 7x + 9}(5*2x + 7 + 0) + e^{5x}*5\\=&10xe^{5x^{2} + 7x + 9} + 7e^{5x^{2} + 7x + 9} + 5e^{5x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 10xe^{5x^{2} + 7x + 9} + 7e^{5x^{2} + 7x + 9} + 5e^{5x}\right)}{dx}\\=&10e^{5x^{2} + 7x + 9} + 10xe^{5x^{2} + 7x + 9}(5*2x + 7 + 0) + 7e^{5x^{2} + 7x + 9}(5*2x + 7 + 0) + 5e^{5x}*5\\=&59e^{5x^{2} + 7x + 9} + 100x^{2}e^{5x^{2} + 7x + 9} + 140xe^{5x^{2} + 7x + 9} + 25e^{5x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 59e^{5x^{2} + 7x + 9} + 100x^{2}e^{5x^{2} + 7x + 9} + 140xe^{5x^{2} + 7x + 9} + 25e^{5x}\right)}{dx}\\=&59e^{5x^{2} + 7x + 9}(5*2x + 7 + 0) + 100*2xe^{5x^{2} + 7x + 9} + 100x^{2}e^{5x^{2} + 7x + 9}(5*2x + 7 + 0) + 140e^{5x^{2} + 7x + 9} + 140xe^{5x^{2} + 7x + 9}(5*2x + 7 + 0) + 25e^{5x}*5\\=&1770xe^{5x^{2} + 7x + 9} + 553e^{5x^{2} + 7x + 9} + 1000x^{3}e^{5x^{2} + 7x + 9} + 2100x^{2}e^{5x^{2} + 7x + 9} + 125e^{5x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !