Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + 4)}^{4} + {e}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} + 16x^{3} + 96x^{2} + 256x + {e}^{(2x)} + 256\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} + 16x^{3} + 96x^{2} + 256x + {e}^{(2x)} + 256\right)}{dx}\\=&4x^{3} + 16*3x^{2} + 96*2x + 256 + ({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 0\\=&4x^{3} + 48x^{2} + 192x + 2{e}^{(2x)} + 256\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return