There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + 4)}^{4} + {e}^{2}x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{2} + 16x^{3} + 96x^{2} + 256x + x^{4} + 256\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{2} + 16x^{3} + 96x^{2} + 256x + x^{4} + 256\right)}{dx}\\=&e^{2} + x*2e*0 + 16*3x^{2} + 96*2x + 256 + 4x^{3} + 0\\=&e^{2} + 48x^{2} + 192x + 4x^{3} + 256\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !