There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} - 2ax)ln(x) - \frac{{x}^{2}}{2} + 2ax\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}ln(x) - 2axln(x) - \frac{1}{2}x^{2} + 2ax\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}ln(x) - 2axln(x) - \frac{1}{2}x^{2} + 2ax\right)}{dx}\\=&2xln(x) + \frac{x^{2}}{(x)} - 2aln(x) - \frac{2ax}{(x)} - \frac{1}{2}*2x + 2a\\=&2xln(x) - 2aln(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !