There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ 4{x}^{2} - 12x + 28 - 2{(3)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{2} - 12x - 2*3^{\frac{1}{2}} + 28\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{2} - 12x - 2*3^{\frac{1}{2}} + 28\right)}{dx}\\=&4*2x - 12 + 0 + 0\\=&8x - 12\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 8x - 12\right)}{dx}\\=&8 + 0\\=&8\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 8\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !