There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2{\frac{1}{({x}^{2} - 1)}}^{\frac{1}{2}}) - 2arccos(\frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{(x^{2} - 1)^{\frac{1}{2}}} - 2arccos(\frac{1}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{(x^{2} - 1)^{\frac{1}{2}}} - 2arccos(\frac{1}{x})\right)}{dx}\\=&2(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} - 1)^{\frac{3}{2}}}) - 2(\frac{-(\frac{-1}{x^{2}})}{((1 - (\frac{1}{x})^{2})^{\frac{1}{2}})})\\=&\frac{-2x}{(x^{2} - 1)^{\frac{3}{2}}} - \frac{2}{(\frac{-1}{x^{2}} + 1)^{\frac{1}{2}}x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !