There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{5} + {y}^{4})}{({x}^{3} + {y}^{3})}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{5}}{(x^{3} + y^{3})} + \frac{y^{4}}{(x^{3} + y^{3})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{5}}{(x^{3} + y^{3})} + \frac{y^{4}}{(x^{3} + y^{3})}\right)}{dy}\\=&(\frac{-(0 + 3y^{2})}{(x^{3} + y^{3})^{2}})x^{5} + 0 + (\frac{-(0 + 3y^{2})}{(x^{3} + y^{3})^{2}})y^{4} + \frac{4y^{3}}{(x^{3} + y^{3})}\\=&\frac{-3x^{5}y^{2}}{(x^{3} + y^{3})^{2}} - \frac{3y^{6}}{(x^{3} + y^{3})^{2}} + \frac{4y^{3}}{(x^{3} + y^{3})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !