There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(x + 6)e^{1}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{1} + \frac{6e^{1}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{1} + \frac{6e^{1}}{x}\right)}{dx}\\=&e^{1}*0 + \frac{6*-e^{1}}{x^{2}} + \frac{6e^{1}*0}{x}\\=& - \frac{6e^{1}}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{6e^{1}}{x^{2}}\right)}{dx}\\=& - \frac{6*-2e^{1}}{x^{3}} - \frac{6e^{1}*0}{x^{2}}\\=&\frac{12e^{1}}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !