Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - sqr(1 - cos(x)))(sqr(1 + x) - 1)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{s^{2}q^{2}r^{2}cos(x)}{x} - \frac{sqrcos(x)}{x} - \frac{1}{x} + \frac{2sqr}{x} + s^{2}q^{2}r^{2}cos(x) - \frac{s^{2}q^{2}r^{2}}{x} - s^{2}q^{2}r^{2} + sqr\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{s^{2}q^{2}r^{2}cos(x)}{x} - \frac{sqrcos(x)}{x} - \frac{1}{x} + \frac{2sqr}{x} + s^{2}q^{2}r^{2}cos(x) - \frac{s^{2}q^{2}r^{2}}{x} - s^{2}q^{2}r^{2} + sqr\right)}{dx}\\=&\frac{s^{2}q^{2}r^{2}*-cos(x)}{x^{2}} + \frac{s^{2}q^{2}r^{2}*-sin(x)}{x} - \frac{sqr*-cos(x)}{x^{2}} - \frac{sqr*-sin(x)}{x} - \frac{-1}{x^{2}} + \frac{2sqr*-1}{x^{2}} + s^{2}q^{2}r^{2}*-sin(x) - \frac{s^{2}q^{2}r^{2}*-1}{x^{2}} + 0 + 0\\=&\frac{-s^{2}q^{2}r^{2}cos(x)}{x^{2}} - \frac{s^{2}q^{2}r^{2}sin(x)}{x} + \frac{sqrcos(x)}{x^{2}} + \frac{sqrsin(x)}{x} + \frac{1}{x^{2}} - \frac{2sqr}{x^{2}} - s^{2}q^{2}r^{2}sin(x) + \frac{s^{2}q^{2}r^{2}}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return