There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(x)sin(\frac{x}{2} + 30)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x)sin(\frac{1}{2}x + 30)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)sin(\frac{1}{2}x + 30)\right)}{dx}\\=&cos(x)sin(\frac{1}{2}x + 30) + sin(x)cos(\frac{1}{2}x + 30)(\frac{1}{2} + 0)\\=&sin(\frac{1}{2}x + 30)cos(x) + \frac{sin(x)cos(\frac{1}{2}x + 30)}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !